
Everyone for Themselves?
A Qualitative Study about Individual Security Setups of Open Source Software

Contributors

Sabrina Amft⇤, Sandra Höltervennhoff†, Rebecca Panskus‡, Karola Marky‡ and Sascha Fahl⇤
⇤CISPA Helmholtz Center for Information Security, Germany, {sabrina.amft,sascha.fahl}@cispa.de

†Leibniz University Hannover, Germany, hoeltervennhoff@sec.uni-hannover.de
‡Ruhr University Bochum, Germany, {rebecca.panskus,karola.marky}@rub.de

Abstract—To increase open-source software supply chain secu-
rity, protecting the development environment of contributors
against attacks is crucial. For example, contributors must
protect authentication credentials for software repositories,
code-signing keys, and their systems from malware.

Previous incidents illustrated that open-source contributors
struggle with protecting their development environment. In
contrast to companies, open-source software projects cannot
easily enforce security guidelines for development environ-
ments. Instead, contributors’ security setups are likely het-
erogeneous regarding chosen technologies and strategies.

To the best of our knowledge, we perform the first in-
depth qualitative investigation of the security of open-source
software contributors’ individual security setups, their motiva-
tion, decision-making, and sentiments, and the potential impact
on open-source software supply chain security. Therefore,
we conduct 20 semi-structured interviews with a diverse set
of experienced contributors to critical open-source software
projects.

Overall, we find that contributors have a generally high
affinity for security. However, security practices are rarely dis-
cussed in the community or enforced by projects. Furthermore,
we see a strong influence of social mechanisms, such as trust,
respect, or politeness, further impeding the sharing of security
knowledge and best practices.

We conclude our work with a discussion of the impact of
our findings on open-source software and supply chain secu-
rity, and make recommendations for the open-source software
community.

1. Introduction

Open Source Software (OSS) is a crucial pillar of
modern software systems. The popularity of open-source
software in companies is at an all-time high and continues
to rise [1], [2]. Some popular OSS projects have more than
26 million dependent projects [3].

Given the spread and popularity of OSS, and its integral
part in software supply chains, securing the OSS ecosys-
tem is vital for overall software security. Previous OSS-
related security incidents, such as the famous Heartbleed [4],

log4j [5], or Shellshock [6] vulnerabilities affected millions
of projects and billions of users globally [7], [8]. Addi-
tionally, some open source contributorss (OSCs) have disas-
trously used their influence to impact software supply chain
security. In 2016, millions of services broke when the left-
pad author decided to pull their npm package over a name
controversy [9]. Similarly, some OSCs used their software to
spread political messages and corrupted it on purpose [10],
in some cases even targeting specific populations by, e. g.,
overwriting local user data [11].

However, incidents are not limited to insecure software,
low code quality, or deliberate contributors’ actions. They
can also occur when the individual security setup of con-
tributors is insufficient, as illustrated by several incidents in
recent years.

For example, weak passwords or a lack of multi-factor
authentication (MFA) for developer accounts allowed at-
tackers to compromise accounts and abuse them to add
backdoors into software or distribute malware [12]–[15].
The list of affected repositories also includes high-profile
software, such as ESLint [16] or Gentoo [17].

More sophisticated attacks rely on the inattentiveness
of contributors, and enable attackers to gain access based
on exposed GitHub API tokens [18] or expired mail server
domains, that allowed access to password reset emails [19].

In the above examples, the respective projects have mil-
lions of downloads and were abused to distribute malware
or collect and steal sensitive data, such as API tokens,
passwords, or encryption keys.

These incidents underline the criticality of strong indi-
vidual security setups of OSCs for software supply chain
security, including their Open Source (OS)-related online
accounts, physical devices, and sensitive data such as en-
cryption keys and code secrets. However, previous work
illustrated that OS can lack guidance, norms, or check-
lists [20]–[22] related to security, leaving contributors on
their own with regard to security best practices, or rely on
the potentially sparse communication with other OSCs. In
contrast to previous work by Wermke et al. [23], who mainly
focused on the projects and their internal processes, to the
best of our knowledge, our work addresses the individual
security measures of OSCs for the first time.

Therefore, we aim to answer the following research
questions:
RQ1 Which technologies and practices do open source

contributors deploy for their open-source related in-
dividual security setups?

RQ2 What are common challenges of securing open source
contributors’ individual security setups?

RQ3 How can open source contributors be better supported
in maintaining their individual security setups?

To answer our research questions, we first searched 100
critical repositories for policies or guidance regarding in-
dividual security setups, confirming that projects rarely pro-
vide security-related input for contributors. At the core of
our work, we conduct 20 semi-structured interviews with
OSCs to provide extensive insights into their individual
security setups and the measures they deploy to protect
their accounts, devices, and sensitive data, as well as their
decisions and motivations. While our interviewees were in
general security-affine and tech-savvy, they tended to deploy
practical and usable measures. Social mechanisms were
essential: Contributors rarely talked about their individual
security setups to, e. g., not annoy or confront other contrib-
utors. However, these mechanisms therefore also imposed
obstacles regarding knowledge sharing or necessary security
requirements. Based on our results, we provide recommen-
dations to OSS contributors and projects to increase security
without impacting the unique culture of trust within OSS.

Replication Availability. To ensure replicability and trans-
parency, we will upload all necessary documents, such as
our interview guide, pre-survey and consent form, email
templates sent to contributors, and our final codebook in
a replication package1.

2. Related Work

We discuss related research regarding OSS security, pre-
vious interview studies, and generic work on expert security
advice or measures for personal security setups (personal
security setups).
OSS Security Previous work addressed different security
aspects in OSS. Most research on OSS security focused
on code security or disclosure and on fixing vulnerabili-
ties [24]–[29]. In contrast, we focus on recent works on
supply-chain-attacks and OSC security.

In 2022, Ladisa et al. systematize attacks on OSS and the
supply chain. Using gray and scientific literature, they iden-
tified 107 different attack vectors and 33 potential safeguards
developers can deploy. They also surveyed 151 experts
and developers to validate their findings [30]. In 2019,
Zimmermann et al. investigated the dependencies of more
than 800,000 packages in the npm ecosystem [32]. Overall,
they highlighted the potentially disastrous impact single
developers may have on the entire ecosystem. Packages, on
average, depended on 79 others, and compromised popular

1. Available here: https://doi.org/10.17605/OSF.IO/UDT9E

ones could impact more than 100,000 other packages [31].
Similarly, Zahan et al. analyzed more than 1.6 million npm
packages for weak links, i. e., metadata, such as expired
developer domains, or the existence of installation scripts.
They also surveyed 470 developers about the collected
weak links, who confirmed that some, such as expired
domains and inactive maintainers, are indeed an issue in the
field [33]. Regarding the nature of malicious OS packages,
Ohm et al. collected and analyzed 174 different malicious
code-bases in 2020. Using both compromised benign pack-
ages and malicious repositories targeting developers who
mistype benign package names, their work depicts the nature
of malware on OSS distribution platforms [34]. With the
increasing number of attacks on OSS and its developers,
platforms, such as GitHub or npm, introduced counter-
measures designed to prevent attacks or vulnerabilities.
GitHub’s security alerts and code scanning were analyzed
in 2023 by Fischer et al. They discuss the positive impact
on code security that both features provided [35].

The presented previous work on supply-chain attacks
primarily focused on the characteristics of attacks and mali-
cious code, as well as the impact of compromised software.
In contrast, our work aims to shed light on the human factor
of supply-chain-attacks and the individual security decisions
of OSCs. While previous work identified weak links, we aim
to inquire what measures regarding authentication, devices,
and sensitive data OSCs take to protect their development
environment.
OSS Interviews In the past, various other works conducted
interviews to study the unique culture and workflows of the
OSS ecosystem.

In 2013, Silic and Back conducted 14 semi-structured
interviews with OSCs security professionals and users of
security OSS. OSCs often considered themselves as hackers,
and argued that many OS security tools are useful for
both hacking or security purposes. However, while trusted
by security experts, companies were generally reluctant to
adopt these security tools [36]. Wen interviewed 13 OSCs
in 2018 to investigate knowledge distribution within OS
communities. Due to a lack of norms, established rules, and
hierarchies, knowledge is only sparsely shared [20]. Similar,
Constantino et al. interviewed 12 experienced OSCs in
2020 regarding their collaboration behavior and related chal-
lenges. Their work highlighted how mainly non-technical
issues such as lack of knowledge or documentation can
obstruct cooperation between OSCs [21]. In 2023, Con-
stantino et al. conducted another interview study with 12
OSCs and a survey with 121 regarding collaboration within
the community. Overall, although developers prefer to work
alone, collaboration happens and is most common within de-
velopment and software maintenance [37]. Finally, in 2022
and 2023, Wermke et al. published two interview studies
within the OSS ecosystem. In the first, they interviewed 27
OSCs regarding background processes within OSS projects,
especially related to code security challenges, policies within
the project, and their structure regarding commits and re-
leases. They found that OSCs often only react to issues as
time is often limited, and that therefore team size has the

https://doi.org/10.17605/OSF.IO/UDT9E%20

largest effect on measures taken within projects. While their
work is closely related to ours, Wermke et al. focus on the
inner processes of projects and OSCs interactions instead of
individual security measures [23]. In a follow-up interview
study, Wermke et al. interviewed 25 industry developers
regarding their use of OSS. Overall, companies usually have
guidelines on the inclusion of OSS. While developers would
like to support the software they utilize, this is not always
possible based on a lack of time or decisions from higher-
ups [38].

In contrast to previous interview studies, our work is
the first to shed light on personal security setups of OSCs,
focusing on the impact and decisions of individuals instead
of the projects they contribute to.
Security Advice and Measures Existing policies or per-
sonal knowledge can be a decisive factor for the security
behavior of developers. In this section, we present prior
work on security advice and measures for and from experts.

In 2016, Stobert and Biddle interviewed 15 security
experts regarding their password measures. They found that
while having higher security standards for important ac-
counts, even experts tended to use the same unsafe measures
as non-experts for others [39]. In the same year, Ion et
al. performed MTurk surveys with 231 experts and 294
end users regarding their security mindset, and find vast
discrepancies. Their findings suggest that experts behave
more securely, and, e. g., more commonly used MFA or
password managers [40]. This work was replicated by Busse
et al. in 2019, who were able to confirm that their findings
still held up [41]. In 2020, Redmiles et al. collected 1264
pieces of security behavior and advice from end users, then
among others asked 41 experts to evaluate them. They find
that while most advice was perceived as reasonable and
actionable, experts were in vast disagreements over which
advice was the most important and should be prioritized by
users [42]. A recent work by Klemmer et al. from 2023
asked 18 web developers to search and provide documents
containing security advice. After analysis, they found the
documents to lack accessibility or consistency, and to be fo-
cused on password-based authentication rather than address-
ing more modern solutions such as MFA or passkeys [43].
Finally, also in 2023, Lykousas and Patsakis crawled public
Git repositories in search of leaked passwords to analyze
developer password choices. Similar to Stobert and Biddle,
they found that OSCs in general have stronger password
habits than end users, but again that given a less critical
context, they make similar weak password choices [44].

Previous work on security-related advice and measures
has mostly focused on a generic sample of security experts
or developers. In contrast, we aim to identify which mea-
sures OSCs apply in practice, and what unique challenges
they face in the context of contributing to OSS.

3. Methodology

Below, we provide an overview of the methodology of
our interview study, including details on our semi-structured

interviews regarding design, recruitment, and coding. We
further discuss the ethics and limitations of our work.

3.1. Interview Structure

While previous work was primarily interested in open-
source code security or disclosure of security issues, we
focus on identifying and understanding individual security
setups and decisions of OSCs. To gain in-depth insights into
the status quo, we conducted semi-structured interviews with
OSCs.

As a first step to designing our interview guide, we
used our dependency-based recruitment list (cf. Section 3.2)
to identify the 100 projects with the most dependents on
GitHub for the presence of security policies and whether
they provide contributors guidelines regarding their indi-
vidual security setups. However, we could not find any
meaningful guide beyond providing generic contribution
guidelines or commonly naming contact information for
responsible vulnerability disclosure [45]. We, therefore, omit
a detailed analysis but use this as a further motivation
to identify common practices and challenges and provide
recommendations and guidance for both the open source
and security research community. We based the initial draft
of our interview guide on our research questions, and then
expanded it based on related work and past incidents related
to incidents in the OSS ecosystem. We conducted two
initial pilot interviews, to improve the interview guide and
performed only minor adjustments during our study in the
form of, e. g., additional nudges, or question rephrasings.

For ease of reporting, we divided our interview guide
into seven sections, excluding the introduction and debrief-
ing. Figure 1 and the following give an overview of our
interview guide. The full guide can be found in our repli-
cation package (see 1).

Before the interview itself, we gave a brief introduction
about our institutions and our research. We further stressed
that answers were voluntary and that interviewees could
leave at any time, and gathered their explicit verbal consent
to our audio recording. Additionally, interviewees were of-
fered to conduct the interview in German instead of English
where applicable if they were more comfortable with it.
1. Project Demographics: To break the ice and gain some
insights into the interviewees’ contributions for our later
analysis, we asked about their projects, including questions
regarding their purpose, but also about the length and type
of the interviewees’ involvement. Additionally, we were
interested in financial supporters and users of the project.
2. Individual Security, Privacy & Data Safety Setup:
After gaining an initial overview of their work, we asked
interviewees about their individual security-, privacy- and
data safety-related setup. We stressed that we were only
interested in measures that affected their open source work,
i. e., that we were not interested in measures they solely
used for, e. g., private accounts, or their day job. This section
included questions about accounts and devices used for their
open-source contributions, and related security measures

Intro
Introduction to interview context and obtaining verbal consent.

2. Individual Security, Privacy & Data Safety Setups
Personal measures and motivation regarding authentication
security, devices and sensitive data handling.

1. Project Demographics
Establish interviewees' OSS project background, e.g., their role,
length of involvement, and project purpose.

6. Personal Experiences with and Expectations for Incidents
Establish opinions of an example incident, interviewees' own
experiences, and threat models regarding account compromises.

5. Contributor On- & Off-Boarding
Explore interviewees’ on-boarding and off-boarding experiences
as contributors to OSS.

4. Unofficial Community Best Practices
Existence of undocumented best practices, expectations between
contributors, or discussions of security topics.

3. Official Guidelines & Policies
Existence and extent of official guidelines for personal security
within OSS projects.

Outro
Collect any additional remarks, feedback, and conducting a
debrief for the interview.

7. Problems and Improvements
Explore interviewees’ view on problems and potential
improvements of personal security setups.

Figure 1. Overview of the interview structure and the topics we addressed.
We asked interviewees broader questions, with more detailed follow-ups in
each section. Depending on the dynamic of the interview, deviations from
this structure were possible.

such as authentication, encryption, or storage measures.
Furthermore, we asked how sensitive data such as code
secrets, API, SSH, or encryption keys were handled or
shared. We also asked about their primary motivation for
their setup and changes over time or differences to their
private security setup.
3. Official Guidelines & Policies: Companies often pro-
vide official and binding policies regarding security and
privacy for employees. While OSC are typically volunteers,
their individual setup can affect millions of users after
successful attacks, therefore, we were interested in whether
OSC encountered any kind of official security policy within
the projects they contributed to. If present, we asked several
follow-up questions about their specifics, e. g., what they
covered and how they were communicated or enforced. In

case there were no official policies, we asked if there was
a specific reason for their absence.
4. Unofficial Community Best Practices: Based on pre-
vious work on the social interactions of OSS contribu-
tors [23], [36], we expected our interviewees to share or
discuss actively, e. g., news from the community or general
technology, including incidents and security measures. We
therefore differentiated between the official guidelines from
the previous section and also included several questions
related to community discussions, security expectations for
specific people and roles, and overall incentives.
5. Contributor On- & Off-Boarding: Similar to the third
block in our interview guide, this block was inspired by
workflows within development teams in the industry that
typically do not apply for OSS projects. We were therefore
interested in the degree to which OSC encountered on-
boarding instructions regarding expected security behavior,
or how off-boarding is handled when somebody with ele-
vated rights decided to leave a project.
6. Personal Experiences with and Expectations for
Incidents: This section was designed to capture intervie-
wees’ opinions on past incidents, challenges they have
encountered with their setup related to security, and any
inconveniences they have experienced within their projects.
We asked them for their opinion of the ctx-compromise
in 2022 [19], providing details when necessary. We further
asked how severe they gauged their risk for similar attacks,
i. e., their personal threat model. Additionally, we inquired
about incidents they experienced themselves or heard of.
7. Problems and Improvements: To conclude the inter-
view, we explored interviewees’ perspectives on the overall
problems within security setups in OSS, improvements they
would love to make if they had no limitations, and lastly,
the security measures they deemed most important.

Finally, if there were no other remarks or questions, we
concluded the recording and handled compensation details.
We gave them further opportunities to ask questions and
offered to store their email address to receive a pre-print,
to provide them with the opportunity to veto phrasings to
ensure we did not misinterpret them or reveal too much
about their identity.

3.2. Recruitment

To collect an initial list of critical open-source projects,
we used GitHub Search [46], [47]. GitHub Search is a
continuously updated sample of GitHub repositories with at
least ten stars that are written in one of the 20 most popular
programming languages on GitHub2. To only include active
open-source projects, we excluded projects with less than
40 commits and less than 20 different contributors overall,
as well as projects that did not receive any commits within
the last six months at the time of collection [23]. Our final
sample included 44,468 projects.

We sorted this list by highest dependent count according
to GitHub to identify the projects with the broadest outreach

2. This list can be seen on their website: https://seart-ghs.si.usi.ch/.

https://seart-ghs.si.usi.ch/

for the first half of recruitment. These dependencies stem
from references within code on GitHub, i. e., if a project
is called upon by another, its dependency count is incre-
mented. However, as many relevant projects are typically
directly installed and not built upon by others, they were
not reflected in our dependency-based list. We, therefore,
created a second list of repositories, this time sorted using
the popularity score proposed by Wermke et al. [23]. We
refrained from sorting purely based on stars or forks, as we
noticed high false-positive rates (e.g., non-code repositories)
within both. We followed both lists from top to bottom,
equally visiting each repository to recruit interviewees. We
searched the projects and contributors for public websites
and contact information external to GitHub, acknowledging
the GitHub ToS regarding personal data usage [48]. We
refrained from emailing anybody more than once and did
not contact individuals who either did not provide public
contact information or explicitly stated they did not want
to be contacted for advertisements, job offers, or research
studies.

We approached our interviewees with an email including
links to our project and team website for further information
regarding our work and our Qualtrics pre-survey [49]. The
latter was used as a consent form to collect demographic
information regarding the interviewee’s OSS projects and
experience. We forwarded them to our Calendly [50] to
schedule a time slot for the remote interviews. We further
offered interviewees to choose their preferred video confer-
ence tool between institution instances of Zoom, BigBlue-
Button, or our self-hosted Jitsi.

As compensation for an estimated hour of their time,
we offered each interviewee to sponsor a GitHub project of
their choice with $60.

Overall, we recruited 20 interviewees until we reached
thematic saturation. We additionally aimed to recruit a
diverse set of interviewees based on their project type,
size and outreach, as well as the contributors experience,
including their years of experience and project roles. Table 1
overviews our interviewees, the projects we recruited them
through, and additional recruitment information.

3.3. Data Analysis

We used a semi-open coding approach based on thematic
analysis [51]. Before the first codings, we developed an
initial codebook using our expectations for common themes
based on our interview guide and related work (see 1. We
further enriched this codebook using our two pilot inter-
views. Although active OSCs, these pilots did not satisfy
our recruitment criteria and were therefore not included in
our results. To increase the reliability of our results, each
transcript was coded by two researchers individually using
Atlas.TI [52]. Since we conducted interviews in English
and German, all involved researchers were fluent in both
to ensure a correct understanding of the transcripts.

After coding, the researchers merged and discussed their
codings until all conflicts were resolved. Prior interviews

were revisited whenever a new code emerged in this process
to ensure consistent coding.

We assigned 1,581 codes over all interviews, averaging
on 79 codes per interview.

In line with previous work, we chose to omit any form
of inter-rater reliability [23], [53]–[55] in favor of a coding
approach based on regular discussion and result merging.

3.4. Ethics

This work was approved by our institution’s Ethical
Review Board (ERB). Additionally, we modeled our study
on the ethical principles for research involving information
and communication technologies presented in the Menlo
Report [56].

During recruitment, we relied on cold emailing. How-
ever, we contacted only individuals with public-facing con-
tact details and sent no additional invites or reminders. All
interviewees signed a consent form including details on our
interview procedure and data handling before signing up
for the study. We further asked for permission to record the
interview audio. During the interview, we reminded them
about some core parts of the consent form, such as their
option to skip any question and leave and revoke their
consent at any time, in which case we would delete all
data stored about them. While we collected some identifiable
information, such as their name and email, this was used to
send interviewees a pre-print of our work to allow them to
correct misunderstandings. We handled and stored all col-
lected data in compliance with the EU’s GDPR. All data was
stored in a self-hosted encrypted cloud, and transcriptions
were done using the GDPR-compliant service Amberscript
and manually checked for correctness. We removed all audio
recordings and transcripts after paper acceptance. For their
participation, we offered interviewees to sponsor a GitHub
project of their choice with a one-time sponsorship of $60,
in line with previous research [23].

3.5. Limitations

For our work, typical interview limitations apply, includ-
ing common biases such as under- or overreporting, selec-
tion, self-reporting biases, and recall and social desirability
biases. This includes that OSCs with an especially (in)secure
behavior might have chosen to ignore our invitation as they
either felt like they could not contribute due to their lack
of security or that we are not trustworthy, and that telling
us about their measures would be contrary to their threat
model. We sampled interviewees from projects with either
a high number of dependents or a high popularity. We did
not regard the interviewees’ recent project activity or extent
of contribution besides requiring them to have made at least
10 commits, and therefore, in some cases, we talked to
developers whose contribution was only minor or who had
moved on for years. However, we argue that this type of
involvement is also part of the OSS ecosystem and that pre-
vious incidents have shown that, e. g., project abandonment
and outdated security decisions could also harm security.

0%

100%
15% 30% 45% 55% 70% 85%

None
Almost All

All
MostMajorityAbout HalfManySomeA Few

Figure 2. Overview of the qualifiers and respective percentages used
throughout our results. All occurrences of the respective qualifiers always
refer to the same portion of participants.

Overall, our work is qualitative and should be interpreted in
context. Based on the present biases and sampling choices,
it does not generalize to the overall OSC population. Finally,
we collected our list of initial repositories in July 2023 but
invited interviewees and conducted interviews until Novem-
ber 2023. Due to this time, the activity of some projects and
OSC might have shifted.

4. Results

Below, we report on the results and main findings of
our semi-structured interviews. While roughly following our
interview guide, we omitted or merged some less engaging
or impactful interview sections for brevity. We will provide
more detailed results and our complete codebook in a later
replication package. In our results, we generally avoid re-
porting counts due to the qualitative nature of our interview
study. To avoid a quantitative interpretation of our work, we
will mostly rely on qualifiers (see Figure 2) to give a general
idea about the prevalence and weight of our findings.

4.1. Interviewee Demographics

We report interviewee demographics and their OSS
involvement. Table 1 summarizes important demographic
information of our interviewees. We did not collect the
gender, age, or ethnicity for lack of relevance to our research
questions and to protect our interviewees’ privacy.

Almost all had on average more than six years of expe-
rience doing OSS, and 11 spent five hours or more of their
weekly time on OSS tasks. Nine worked on OSS in their free
time or as a hobby, while eleven were paid by their company
to spend at least a fraction of their weekly working hours on
OSS. Besides companies paying developers to work on OSS,
twelve received donations, of which nine stemmed from
company sponsorships. In contrast, four were employed by
non-profit organizations or governments. Seven mentioned
receiving donations from individuals. In three cases, their
work was financed by other products of the company they
worked for or support contracts.

We asked interviewees to describe their role in OSS
projects. As interviewees typically were active in multiple
projects, many filled different roles simultaneously or had
varying degrees of involvement. Six reported to own at
least one project themselves. Overall, twelve were active
maintainers in at least one project, and six were the sole con-
tributor. Six also reported a less active role, and mentioned
only infrequent or triaging commitment. Regarding their
typical team size, three worked in small teams of less than

five contributors, while five mentioned larger groups. We
further inquired about the platforms they used to communi-
cate and work on OSS together. All interviewees mentioned
regular usage of GitHub, and some also used other social
coding platforms such as GitLab or BitBucket. Nine also had
accounts with package managers for their respective primary
programming language, e. g., npm for JavaScript developers,
or PyPI for Python users. Regarding communication, eleven
of our interviewees regularly used a messenger, typically
Discord or Slack, to chat with other project members.
However, interviewees also commonly reported interacting
via GitHub issues, especially when communicating with
contributors beyond the core team or external developers:
“For the people who are official maintainers, we discuss
things on Discord [...]. For other contributors, we mainly
discuss things via the GitHub interface [...].” (P16).

Overall, eleven reported they still were involved in the
project we recruited them through. Regarding their overall
projects, seven contributed to code (re)structuring projects,
such as linters, validators, or parsers. Other common project
types included web design libraries and tools, or applica-
tion frameworks. Sixteen mentioned companies using their
software, eleven including well-known platforms for, e. g.,
social media, entertainment, or news outlets.

Overall, the interviews lasted between 34–85 minutes,
averaging 56 minutes. We conducted 14 interviews in En-
glish, and six in German.

Summary: Project Demographics.Interviewees were generally
highly experienced, and half could spend at least a portion of
their full-time employment on OSS. Most were active contrib-
utors in at least one project; some only had a less active triage
role. Most common project areas included code (re)structuring
tools, web design standards and libraries, or application frame-
works.

4.2. Individual Security Setups

After inquiring our interviewees about their projects, we
asked about their personal security setup, i. e., all measures
they took to protect their accounts, devices, and sensitive
data related to their OSS work. Overall, most interviewees
were security-affine and aware of risks. Almost all reported
the use of both MFA via timed one-time password apps
or hardware tokens, and a similar portion mentioned their
password managers. Many interviewees further reported the
adoption of MFA where possible, but “Not every account
supports YubiKeys or 2FA.” (P1).

However, interviewees also discussed obstacles by
service-specific policies restricting, e. g., password length
or not offering certain MFA types. “Websites tend to have
rather odd, and usually not considered secure in my view,
requirements that narrow down the list of possibilities.”
(P14).

Despite upcoming hopes of establishing passkeys [57] as
a novel authentication technology, only a few interviewees
mentioned their use.

Besides secure authentication measures, we asked inter-
viewees about the device they used to work on OSS. Overall,

TABLE 1. DETAILED OVERVIEW OF INTERVIEW PARTICIPANTS, THEIR PROJECT BACKGROUND, AS WELL AS SOME PROJECT METADATA. FOR
REPORTING, PARTICIPANTS WERE ASSIGNED AN ALIAS. WE ONLY REPORT BINNED PROJECT METRICS TO PRESERVE BOTH OUR PARTICIPANTS’ AND

THEIR PROJECTS’ PRIVACY.

Alias Interview Recruitment Project Self-Reported OS Experience2

Lang. Duration Codes1 Group Type Dependents Role Years in OS Weekly Hours

P1 GER 55:06 90 Dependents Transpiler > 10 Mio. Owner 6-10 1-5h
P2 EN 53:22 98 Dependents Static Code Analyzer > 10 Mio. Infrequent >10 1-5h
P3 EN 1:09:48 67 Dependents JSON Validator > 10 Mio. Maintainer 6-10 1-5h
P4 EN 50:32 59 Dependents CSS Optimizer > 10 Mio. Regular 3-5 1-5h
P5 EN 42:09 67 Dependents JavaScript Optimizer > 10 Mio. Owner 6-10 1-5h
P6 GER 38:46 67 Dependents Web Resources > 10 Mio. Maintainer >10 >40h
P7 EN 58:50 58 Dependents JavaScript Parser > 3 Mio. Maintainer 6-10 Unsure
P8 GER 55:07 89 Dependents Type Checker > 5 Mio. Maintainer 6-10 >40h
P9 EN 58:54 122 Dependents Logger > 5 Mio. Owner >10 11-20h
P10 EN 1:24:58 83 Score Data Visualization < 1 Mio. Maintainer >10 1-5h
P11 EN 56:27 86 Score App. Framework < 1 Mio. Infrequent 3-5 1-5h
P12 EN 1:00:01 80 Dependents Unit Testing > 5 Mio. Maintainer 6-10 >40h
P13 GER 1:12:19 60 Score App. Framework < 1 Mio. Owner >10 >40h
P14 EN 1:04:09 117 Score JavaScript Library < 1 Mio. Maintainer >10 >40h
P15 EN 57:41 65 Dependents CSS Optimizer > 10 Mio. Owner >10 Unsure
P16 EN 57:25 85 Score Shell Configuration < 1 Mio. Maintainer 6-10 1-5h
P17 GER 48:11 77 Score App. Framework < 1 Mio. Maintainer 6-10 21-40h
P18 GER 33:29 58 Score System Utilities < 1 Mio. Maintainer 3-5 1-5h
P19 EN 52:10 76 Score Static Site Generator < 1 Mio. Owner 6-10 1-5h
P20 EN 57:58 69 Score Version Control < 1 Mio. Maintainer >10 1-5h

1 Total number of codes assigned to the interview after resolving conflicts. 2 According to pre-survey

almost all used a laptop for OSS, and only some mentioned
a desktop computer. While half of our interviewees used
mobile devices such as smartphones, they were typically not
used to write source code but for communication and MFA
apps. About half used multiple devices. Half of all inter-
viewees mentioned securing these devices using biometric
authentication in addition to their passwords.

Our interviewees typically avoided lesser usable or ef-
fective measures instead of applying a wide variety of
security measures, regarding which P14 describes that the
community has “a few paranoid people, and then there’s
everybody else”.

For example, while most mentioned using device en-
cryption at rest, about half relied on the default encryp-
tion built into their operating system. Some seemed unsure
whether they genuinely had encrypted systems. Related,
only about half mentioned to sign their commits regularly
cryptographically. Some described commit signatures as
hard to use or an ineffective security measure:

“But I don’t do [commit signing] on every project
because sometimes it’s too much work. [...] I’m
not sure if it functionally has a bigger advantage.
As long as my GitHub account is already pretty
secure.” - P19

Physical security was rarely perceived as having high
relevance. About half described their home as secure enough
without additional measures, especially since some men-
tioned working from home, which meant that their devices
also stayed there. “I just keep them at the house. It’s really
secure there. [...] I’m doing home office so they’re just on
the desk.” (P4).

While traveling, about half mentioned measures such
as not leaving their devices unattended. Some additionally

mentioned situational measures such as not leaving the
devices in a parked car or carrying them separately from
the physical keys required to unlock these devices. “I never
leave my laptop unlocked and also just always with me. I
never leave it in a vehicle; I live in San Francisco.” (P12).

Overall, the digital security of our interviewees seemed
more robust and more thought-through than their physical
security, which might be due to the perceived severity of
physical attacks. While the overall likelihood of attacks was
perceived as low, they were worried about attacks explicitly
targeting them rather than just petty theft. Some, therefore,
expected attackers to be highly dedicated to gaining access
to their unlocked devices, to a degree where weaponized
violence against them was a reasonable possibility.

“If somebody breaks in my flat and is inside, they
can torture me to unlock my devices. [...] But if
somebody actually targets me and gets physical
access, there’s no realistic way to defend against
that” - P8

In other words, when physical security becomes relevant, the
situation is dire enough that it would not help and is there-
fore not a sensible security measure: “Physical access will
almost certainly undo most security attempts. If I encounter
a threat actor who gets physical access to my devices, I’m
probably screwed.” (P3).

Beyond physical security for devices, many interviewees
were cautious with their network and device structure, using,
e. g., private networks or multiple virtual environments to
keep devices and especially projects separate from each
other.

As a final topic regarding their individual security setups,
we asked interviewees which sensitive data they might need
to handle. We prompted for code secrets, such as API

keys, or personal secrets, such as SSH or encryption keys.
Almost all mentioned SSH keys and many stated to handle
encryption keys. Code secrets were only relevant in some
cases. We attribute this to how secrets in some projects are
automatically handled, e. g., by using private repositories
that only authorized project members had access to:

“When I make a repository for a new piece of code,
I go to [our admin] and tell him which secrets I
need in my build scripts. He unlocks them for me
and I only use variables. I don’t know the secrets,
I don’t know how often they’re rotated.” - P13

About half interviewees mentioned how secrets were limited
to higher access within a clear hierarchy, i. e., since only spe-
cific project members were allowed to handle, e. g., release
tokens for npm, there was no need to share these secrets in
any way. Some described how they were generally cautious
around various web resources. For example, a few men-
tioned carefully vetting or auditing browser plugins, while
many reported they consciously chose to use their respective
browser. About half used plugins to block advertisements
or trackers. Although many interviewees mentioned using
separate browsers, profiles, or even GitHub accounts to dis-
tinguish between (OSS) work and private usage, the majority
stated that overall, their security setup for private or OSS
environments was primarily the same, further stressing how
our interviewees were generally tech-savvy and security-
aware even for personal purposes.

We were further interested in our interviewees’ motiva-
tions, and influences regarding their security setups. Many
interviewees mentioned a personal responsibility for their
code and users:

“[...] I realized the security risk that having my
package on lots of machines could cause. I am
aware that I am responsible for what is pushed,
and what is pushed could be bad, right?” - P5

Similarly, hearing about or experiencing incidents was a
motivation for about half to improve their individual security
setups as well. For example, P7, whose repository used
by millions was hijacked based on developer credentials,
commented: “The incident became an eye-opener for me.
Before [it], I wasn’t much aware of security, because I am
not involved in... I just want to code.” (P7).

Beyond the negative impact of security issues, many
interviewees further reported news articles and publications
that influenced or inspired them to upgrade their security.
“I’d read some article about how to sign your git commits
and all this stuff, I was like, "Oh, that seems useful." I started
doing that.” (P9).

Some others were incited by what they heard or noticed
others do, as P11 describes: “I see most people do that, so
I also do that.”.

Finally, following their general tech-savvyness, many
reported being personally interested in security topics and,
therefore, enjoyed testing or exploring security measures.

Summary: Individual Security Setups.Almost all interviews
used MFA and password managers to increase account security.
Beyond this, measures become rarer, but include device encryp-

tion, code signing, the separation of networks and devices, or
using continuous integration to handle code secrets. Physical
security played only a secondary role. Overall, interviewees had
a solid security-awareness and tech-affinity, and tended to only
deploy measures they perceived as effective or practical.

4.3. (Un)Official Guidelines

After learning about the security measures interviewees
deployed and about their motivations, we were interested in
security measures-related instructions or discussions within
OSS projects.

First, as suspected after our initial motivational search
of written guidelines in the 100 repositories with most
dependents, no interviewees reported any official security
guideline in their projects besides generic contribution regu-
lations or policies for vulnerability disclosure. Despite that, a
few felt that personal security guidelines within projects had
some merit. Beyond projects, some interviewees described
regulations that originated either from their workplace or
organization and that indirectly affected their OSS projects
or were still adhered to, although the project was nowadays
independent of their original company.

“All of these [...] were governed by companies
anyway in the first place. Companies themselves
have security policies. I think they assume that
just goes down there. They don’t usually grant
maintenance access to random people” - P2

One interviewee, who is active in a widely used applica-
tion framework, described these company measures as too
pervasive, as their OSS team did not typically utilize the
regular company workflows:

“The open source team is actually on a war footing
with the topic of managed computers. Because that
means antivirus was installed by the company,
and we don’t know anymore what’s running on
our devices, we have no control. [...] We have
coworkers who prefer buying their own device
for work, because they don’t need [the managed
software and secrets].” - P13

Some others mentioned how projects enforced the use of
MFA for their GitHub accounts if they were part of specific
projects or organizations, a measure that GitHub has been
gradually rolling out and plans to extend to every account by
the end of 2023 [58]. Interviewees had various explanations
when asked why no official guidelines were provided by
OSS projects. First, a majority felt that official guidelines
lacked relevance. This included interviewees not having the
time to write guides, that other tasks had higher priority,
or that a project was not security-critical, and therefore, no
harm could be done: “Most of the ones I’ve worked on aren’t
dealing with a whole lot of sensitive data.” (P9).

Furthermore, the individuals’ security was not perceived
as important enough to enforce or request security mea-
sures that might deter other contributors. About half of our
interviewees mentioned that they either implicitly trusted
other contributors and their security setups or that the team
was so small there was nobody to write security guidance

for: “Because I’m the person who presses merge on pull
requests and I’m the person that deploys, I don’t need to
communicate the guidelines to anyone else.” (P5).

In this case, the respective project had hundreds of
contributors, and more than ten million dependents. In some
other cases, interviewees assumed a lack of responsibility,
in which they did not feel up to the task of deciding
which measures are practical and sensible or perceived the
specifics, such as the exact password manager users should
install, as up to the individuals and not part of the project.

“Part of me is thinking what it would take to docu-
ment that. I think part of it is that it’s not project-
specific usually. [...] People might use different
tools to accomplish the same thing.” - P14

One interviewee further mentioned that liability could be
an issue if official regulations were published and were
insufficient. Finally, some interviewees argued that the de-
fault security measures, such as GitHub requiring MFA,
were plenty and therefore saw no need to implement other
measures.

“I would need to communicate these guidelines and
ask for people to do that but even if that were the
case, I think npm and GitHub would be enough to
enforce these. I could change the settings of the
organization to enforce [2FA].” - P5

Regarding less official communication and floating
knowledge, interviewees rarely described other methods
from contributors than what they already applied. We at-
tribute this to how contributors trust that each other’s setups
are secure: “I think it’s just mental fallacies that you’re like,
"Hey, he’s a friend. I can trust him.", and then he turns out
to be a very terrible roommate.” (P2).

Similarly, contributors do not want to pressure or anger
others by communicating expectations:

“You can’t enforce certain things. I’ve got friends
that store and reuse the same 5 passwords in a
word document. And I can’t eliminate that possi-
bility within open source. Like, I don’t want to ask
my colleagues, do you use this or that?” - P1

Overall, most of our interviewees stated that they never or
only rarely discussed personal security measures with other
OSCs. In some cases, security was discussed, but it mainly
encompassed tooling choices or notifying each other about
potentially lacking security: “In the member lists, you can
see who activated 2FA, and people tell you it’s important to
have if you’re part of certain organizations.” (P6).

We further inquired interviewees about expectations to-
wards their and their team’s security behavior, which were
mentioned by a majority. We found that similar to how OSCs
rarely discuss security with each other, expectations are also
typically not directly communicated and implicit. However,
many mentioned different security measures—mostly usage
of MFA and solid password hygiene—as an expectation
between contributors: “If I learned a contributor is not using
2FA on their account, I would be shocked” (P2).

Additionally, about half of interviewees mention access
rights or hierarchies within projects. This included how often

only a few contributors can release a package and how
others can, at best, submit pull requests but not directly
commit to a project. These mentions often included the
implicit expectation that the respective project members
surely also had a higher security level, as their impact in
case of compromise was higher: “For people who are just
outside contributors, mostly we don’t expect any security.
[...] If it’s like an admin account, then, of course, we need
top-level security.” (P11).

Summary: (In)Official Guidelines.No OSS project provided
guidelines for individual security setups. Exceptions were
projects with organizational roots or relations, where company
policies also affected OSCs. Reasons given for this lack of
official guidance included a lack of relevance or responsibility
for others’ security, and trust towards the other contributors that
made policies superfluous. Regarding unofficial best practices,
we only rarely found interviewees to discuss security with each
other, and found that they typically by default expected others
to have a sensible security setup.

4.4. Contributor On- & Off-boarding

Next to the guidance and regulations interviewees en-
countered, we also inquired about their experiences with
on- or off-boarding in OSS projects. Only a few encoun-
tered policies for their individual security setup during on-
boarding. We attribute this to the general lack of guide-
lines within OSS projects. Similar to what interviewees told
us about overall security guidelines, on-boarding measures
also often happened in the context of company policies or
enforced security measures by, e. g., GitHub. Overall, off-
boarding measures were described by most interviewees,
and typically encompassed access restrictions.

Some interviewees mentioned that they gained project
access rights or even ownership overnight. For example,
P1 commented about a compiler project with millions of
dependents:

“For <project> I wrote the original creator a mes-
sage, and he told me he’ll give me access, and
then I got an email that I’m now the owner of
<project>. That was a surprise for me, I didn’t
know him, but he trusted me a lot.” - P1

These decisions were typically made based on reputation
gained via regular commitment or since the original owner
required an inheritor: “[They] got burned out or just moved
on [...] I was one of the last to file issues or do a patch and
it was like, oh, here you go. You’re now in the repo.” (P10).

In contrast to company employments, where contact
expiration marks the end of an individual’s involvement
and triggers off-boarding and access restrictions, there is
no similar event for OSS volunteers. On the contrary, about
half told us about OSCs who stopped contributing but never
officially lost their access rights. This was explained by the
circumstance that, due to the voluntary nature of the work,
determining what constitutes a person leaving and what is
just a lengthy break to prioritize other areas of life is a
nontrivial task. “I think people just get busy. I know for

some of my projects I’ve gone a year between commits. I
didn’t stop, I just had other stuff.” (P4).

Others perceived removing others’ access without their
confirmation and approval as overstepping their bounds,
although their projects had millions of users, implying that
incidents might have vast consequences. “If somebody hasn’t
been active for three years, like do I revoke their access? It
seems like I’m kicking them out.” (P14).

Summary: Contributor On- & Off-boarding.Interviewees rarely
encountered official policies during on- or off-boarding, espe-
cially outside of company contexts. Off-boarding encompassed
access removals. Within OSS projects, contributors could get
access relatively easy, while they tended to keep this access
even when they eventually became inactive.

4.5. Challenges, Improvements, and Recommenda-
tions

In the following, we report on the challenges that OSS
faces regarding personal security practices, improvements
interviewees would like to make on their individual security
setup, and measures they recommend the most to achieve
solid baseline security.
OSS Challenges Regarding Personal Security About half
of our interviewees criticized dependencies in OSS, espe-
cially regarding JavaScript projects. Common issues, espe-
cially mentioned by participants active in popular JavaScript
projects, included too many dependencies and large quan-
tities of unknown code that could not feasibly be audited,
leading to security issues:

“They use npm, and there’s tens of thousands of
packages being pulled in by as many different
people who were never vetted. Who were never
asked, consulted, or reviewed in any way.” - P14

Some challenges interviewees perceived in the security be-
havior of OSCs were attributed to how security was (not)
communicated. This included how some did not know the
setup of others. These interviewees also argued that secu-
rity could not be enforced and that there were unrealistic
expectations towards OSCs to be secure and deliver quality.

“There’s no centralization. Everyone’s going to
do their own thing. [...] If only one out of a
thousand developers have very bad security prac-
tices, [incidents] are going to happen, because
there are thousands and thousands of open-source
projects.” - P5

While some mentioned the unique trust structures as a
further issue on how security behavior lacked transparency,
this was typically seen positively or as a less severe issue:
“There’s no visibility into the chain of trust. There’s no solid
legit trust, it’s just always implicit, which has worked so far.”
(P2).

Despite this sense of security, a major and widely used
tooling repository that the interviewee had access to, was
hijacked due to weak developer credentials. As they had
not been an active contributor when the hack occurred, we

assume they were unaware of this incident. Many inter-
viewees also described human factors as issues, such as
owners abandoning projects, that security might lack if it
is not enforced, or that projects security can be lacking due
to unaware or inexperienced developers. “There’s a lot of
really young developers who are not so aware of all the
possibilities and the creativity of security malicious people”
(P4).

Furthermore, many mentioned technical issues, such as
a lack of usability of MFA or code signing, the use of
local builds, lack of isolation between projects, or a lack of
version pinning regarding safe dependency versions. While
the latter was mentioned as a remedy to the issues with
unvetted dependency updates, interviewees felt that this
option was not widespread enough: “[Without it] you will be
installing random versions, and then you’ll be vulnerable to
these attacks [...] Dependency pinning with lock files must
be the default across the industry.” (P2).

Finally, many interviewees mentioned that individual
security is often a secondary or less critical task: “I guess
there’s still some naivety or laziness. It’s not the most
exciting topic and feels more like an obligation.” (P6).

Overall, the creation of OSS is the main goal, and
security is seen as a task that takes away from contributors’
available time, especially if they are unable to pay their bills
with their OSS work:

“I think a lot of people who maintain open source
projects, [...] probably have some other form of
employment, that is likely a full-time commitment,
[...]they don’t have a lot of time to really maintain
it. That in turn means that vetting of external con-
tributors or doing security audits of open source
libraries is always going to be hard.” - P3

Improvements of Interviewee Setup During our interview,
we spoke about incidents and how interviewees rated their
setup, and perceived themselves at risk of an attack. We
found that a majority perceived their risk as low, with a few
others being unsure about it. Typical reasons included that
they had no critical access, were on top of their security, or
that secure defaults such as enabling MFA were sufficient.
“I would say very low because, again, everything is behind
2FA. I’m very on top of my emails and domains.” (P2).

However, about half of our interviewees mentioned that
perfect security did not exist because there was always
something unexpected, such as code vulnerabilities circum-
venting security measures or a physical intruder, that might
break through the measures they considered secure. “Some
completely unknown zero-day vulnerabilities could be ex-
ploited in anything that I use. Generally, I feel my setup is
probably better than the average of most people.” (P19).

About half of the interviewees wished to improve their
authentication security, e. g., by moving to a different pass-
word manager or by upgrading MFA to a hardware key.

Another half further mentioned that they would like
to become more careful, e. g. by auditing their tools or
separating their devices regarding their purpose, including
the adoption of sandboxing and virtual machines:

“I would run everything in VMs and move appli-
cations into flatpaks. I’d have way more security
boundaries on my PC. Not only the devices, but
also separating applications and reproducers. Just
everything imaginable.” - P17

Similarly, some mentioned technical issues such as malfunc-
tioning hardware keys, or issues with the sharing or sync-
ing of password managers obstructing them. Interviewees
argued that resolving these problems would also improve
their setup. “There should be better tools. Then it, you know,
that makes it easier to demand that as a requirement of a
contribution.” (P9).

Regarding encryption, some interviewees mentioned de-
ploying encryption for both their devices or email, which
they did not (yet) adopt due to bad usability: “I already
thought about encrypting email [...]. I had that a while ago,
but then something didn’t work, and I didn’t bother to get
it running again.” (P18).

Some interviewees would appreciate more time to fur-
ther educate themselves besides mentioning specific security
measures: “Maybe actually spend some time investigating
how to make [my setup] better [...] there are lots of re-
sources on the internet on how to make it more secure.”
(P15).

This also included interviewees who mentioned that
checklists with instructions beyond pure education would
help them improve their security: “It would be helpful
if there were checklists or similar, that you could follow,
especially regarding two-factor authentication and commit
signing.” (P6).

Finally, some interviewees were already satisfied with
their individual security setup and therefore did not want to
upgrade their setup.
Interviewee Security Recommendations Finally, we
asked interviewees what security measures they considered
a bare minimum that all OSS contributors should adopt.
Overall, interviewees suggested the measures they applied,
underlining that they were content with their measures.

By far the most common, almost all recommended using
MFA, which was often considered the most critical measure
that prevented account compromises. “With 2FA, you can be
quite sure that even if they know your password, they won’t
be able to do anything. Please at least do that.” (P4).

Furthermore, about half interviewees recommended us-
ing a password manager: “I always tell people I know who
are not using a password manager to use one. That’s one
of the most basic things people can do [...]” (P19).

Besides password managers, about half mentioned that
passwords should be strong, generated or unique per service.
Despite generally good suggestions, a few suggested regu-
larly changing passwords, which current research considers
bad advice [59], [60]. Beyond these authentication measures,
interviewees’ suggestions became more diverse or vague. In
about half cases, interviewees voiced a rather vague idea
of security measures, likely coinciding with their sense of
security: “I feel like that’s just the default or the baseline
expectation. Same with, don’t leave your screen unlocked,
that kind of thing. It goes without saying maybe.” (P10).

While most interviewees mentioned the use of encryp-
tion to secure their OSS devices, only a few recommended it.
This might be due to encryption typically relying on system
defaults or related to how it mainly defends against physical
threats, that interviewees in general perceived as rarer and
as something where resistance was futile (cf. Section 4.2).

Summary: Challenges, Improvements, and Recommenda-
tions.Interviewees perceived their personal risk of an attack as
overall low. Most commonly, interviewees named high amounts
of typically unvetted dependencies as a challenge. Other chal-
lenges include how the security behavior of others is unknown
or intransparent, different human factors such as issues due to
abandoned projects or inexperienced developers, or technical
obstacles. Common desired improvements included improving
their authentication security, becoming more careful in general,
or resolving previously mentioned technical obstacles. Finally,
interviewees most commonly recommended the security mea-
sures they deployed themselves, such as using MFA or pass-
word managers.

5. Discussion

Below, we discuss our findings, make recommendations
for individual security setups for OSCs, and contextualize
our results with related work.

5.1. Deployed Individual Security Setups (RQ1)

Interviewees most commonly deployed measures regard-
ing their authentication security, i. e., they used MFA and
adopted password managers to benefit from long, complex,
or randomly generated passwords. Furthermore, most used
disk encryption to secure their devices. Beyond this, physical
security was irrelevant for OSCs, as they did not expect
physical threats. If they did, they expected attackers to be
dedicated and violent, in which case physical security would
have no effect.

In our interviewees’ projects, there were rarely any
secrets that required secure sharing. When necessary, in-
terviewees typically used shared password manager vaults
or external services or handled secrets within the CI. In this
case, only specific authorized users had access to the secrets,
using access hierarchies to decrease the impact of account
compromise, as, e. g., unauthorized contributors could not
trigger a package release.

Otherwise, we found that several measures were less
common, including code signing, which was perceived as
impractical and to some degree questionable as a secu-
rity measure, ad blockers or trackers to protect against,
e. g., malicious JavaScript, or Antivirus software. Overall,
our interviewees were security-aware and tech-savvy. They
typically put significant effort into their security setups
and avoided deploying measures they deemed either less
effective or lacking in usability.

5.2. Common Challenges among Contributors
(RQ2)

We identified several challenges our interviewees per-
ceived regarding individual security setups. First and fore-
most, they commonly mentioned issues surrounding the vast
number of dependencies and, thereby unknown code within
OSS, that were described as impossible to audit. While this
was perceived as a well-known issue, interviewees criticized
the lack of care, i. e., how nobody seemed to make an
effort to decrease the number of dependencies, audit external
software, or use dependency pinning to at least control
which (safe) versions were imported by their projects.

Although our interviewees argued that conversations
about security were rare, and in some cases mentioned
that confronting others would make them feel uncomfort-
able, some also mentioned that this level of trust could
lead to problems later on. We perceived that interviewees
commonly projected their security-awareness onto others
and assumed a high level of security as common sense
and obvious. However, we only heard of OSCs questioning
individual security setups when visual proofs of enabled
MFA were available, which made the lack of it publicly
noticeable. Overall, we argue this lack of discussion fuels
the perception of security as a secondary task, and that more
open dialogue and attention could mitigate this.

In several other cases, interviewees reported a lack of
usability or technical issues, e. g., regarding MFA, code
signing, or how local builds are handled.

Finally, while interviewees were security-aware, their
perception of risk was low, either as they never really
thought about potential incidents or because they did not
perceive themselves or their projects as interesting targets
for attacks [61], [62].

5.3. Better Supporting Contributors with Individ-
ual Security Setups (RQ3)

OSC tend to be pragmatic and only deploy a minimum
of security measures that seem effective and easy to use. Be-
low, we provide additional best practices or suggestions on
how OSC could improve their individual security setups by
discussing our observations and interviewees’ suggestions.
Authentication Security: Especially seeing how many
previous incidents happened based on weak authentica-
tion [14]–[17], the wide adoption of authentication security
measures such as MFA and password managers can be
considered an essential minimum. Our interviewees adopted
both widely, suggesting that they are low-barrier security
measures (cf. Section 4.2).
Platform-Enforced Measures: We observed a reluctance
to discuss security among interviewees, which often in-
cluded not wanting to pressure each other toward adopting
specific security measures. However, our interviewees gen-
erally agreed with and accepted platform-enforced security
measures, thereby removing the need to discuss or enforce
the adoption of, e. g., MFA on a case-by-case basis (cf.

Section 4.3). We, therefore, reaffirm current advancements
by, e. g., GitHub [58], npm [63], or PyPI [64], that are
gradually enforcing MFA for all accounts. In cases where
these enforced measures are project- or organization-based,
we recommend that project owners consider enabling them
for all contributors.
Keep Enforced Requirements Inclusive: Related to the
above security measures, we recommend that additional
security measures should not decrease the inclusivity of
OSS. Enforced measures should be low barriers and aim to
not exclude interested and skilled contributors. For example,
we recommend avoiding enforcing the use of hardware keys
to not scare away contributors who might not be willing
to deal with the usability issues [65]–[67] or associated
costs [68], [69].
Manage Hierarchies and Access Rights: We recommend
project owners to utilize clear hierarchies in their projects.
While this can lead to a single point of failure when accounts
are compromised, it also decreases the attack surfaces, as
only specific individuals can cause severe harm with their
elevated access and release rights. This was commonly high-
lighted as beneficial by our interviewees (cf. Section 4.3),
and is utilized by larger projects such as the Linux ker-
nel [70]. Using automated build processes, such as GitHub
Actions, can allow OSCs to further manage access to code
secrets without sharing them with other contributors [71].
Basic Device Security: Regarding devices, we suggest
OSCs encrypt their devices and adopt a routine of locking
them, not leaving them unattended, and only bringing them
with them if necessary. We agree with the tendency that
physical security is otherwise not as relevant as digital
measures (cf. Section 4.2).
Virtualization to Separate Projects: We suggest utilizing
virtual machines or containers to sandbox projects where
possible [72], [73] as mentioned by some interviewees (cf.
Section 4.5). This is especially relevant when contributing
to multiple projects that could affect each other if one is
compromised or when dealing with user-provided content,
such as reproducible code snippets within bug reports.
Provide Guidance in Projects: Finally, despite the general
high tech-affinity, we see a need for OSCs to discuss security
(cf. Section 4.5). An excellent first step could be including
some basic security measures such as the ones described
above into existing guidance structures, such as contribut-
ing.md. These files are often included in OSS projects and
contain details on how individuals can get involved with
the project, and are an ideal place for suggesting measure
for individual security setups of contributors. Since some
interviewees were uncomfortable suggesting precise tooling
choices, guidance could include basic measures such as
MFA, password managers and password hygiene, device
encryption basics, or even guides towards virtualization
and containers when dealing with bug reports and external
code snippets. Where feasible, we recommend providing a
contact person who is willing to discuss security measures
and answer questions to help kick-start more conversations
regarding individual security setups.

5.4. Social Mechanisms Impact Individual Security
Setups

In the following two sections, we discuss some of the
most noticeable themes within our interview study.

A common tendency in our interviews was to report
social mechanisms that influenced almost all contributor
interactions regarding their individual security setups. For
example, some OSCs reported to have quickly gained the
trust of other project members and, therefore, were granted
access rights quickly or were not removed from projects
out of respect or not to antagonize others after stopping
to contribute. This also impacted contributions, as about
half interviewees mentioned that they did not need to write
any security guidance because they trusted each other to
have strong individual security setups without scrutiny. The
same goes for the opposite side, as a similar amount of
interviewees did not want to bring up a culture of distrust or
paranoia, in which security was discussed or even examined:
“I don’t want to come across as a paranoid person all the
time. You’ll talk about it less, even if maybe you’re happy
to be talking to a person who would want to hear about it.”
(P14).

This also carries over to programming practices, as one
interviewee reported how the open source community knows
that JavaScript has an issue with too many dependencies
that are added too quickly to projects but that people did
not speak up not to penalize or shame other contributors.
Similarly, OSCs had a good sense of security but tried to
avoid unnecessarily complicated measures, as security was
only a lower priority. This is likely because the main goal of
OSCs is the creation of software, and their security behavior
and interactions are born from necessity, as P10 describes
it:

“There is some desire, especially among develop-
ers, for the glory days of computing. [...] We could
just write code and trust each other. I think still
that’s alive in the open-source [...].”

5.5. Some Challenges Seem Hard to Solve

While we perceived a unique culture of trust, this also
led to several noticeable drawbacks reported by our inter-
viewees.

OSCs put a commendable lot of trust in each other
and try to, e. g., avoid picking unnecessary fights by ad-
dressing potentially uncomfortable topics such as whether
contributors use MFA. However, this can lead to a lack
of guidance in practice, especially for junior contributors:
“Which is unfortunate, because it usually means that new
people who contribute are just expected to somehow know
or do things differently.” (P14).

Although it seems to be hard to enforce security mea-
sures in OSS projects due to the freedom and lose hier-
archies in projects, we argue that adding best practices to
projects or providing more general security advice can be
a good initial step to open up a dialogue about improved
individual security setups.

In other areas, we found issues based on how quickly
the OSS ecosystem welcomes contributors into projects,
opening up the door for social engineering attacks. In this at-
tack, malicious actors disguise themselves as well-meaning
contributors, only to abuse access rights as soon as they are
gained [74]. However, this is not an easy challenge to solve.
While well-established projects such as Debian deploy an
application process for new contributors, which requires new
members to, e. g., show that they are experienced and have
somebody vouching for them to be trustful and skilled [75],
these processes are mainly unfeasible overhead for smaller
projects. Additionally, requirements about previous experi-
ence can be an excluding obstacle for junior contributors
who just started to become active in the OSS ecosystem.
Similarly, there can be issues when project owners decide
to stop doing OSS due to, e. g., a lack of time or funding,
or from burning out, especially if they need to leave the
projects behind without proper maintenance, or do not have
the resources to correctly chose an inheritor. While there
is no ideal solution for this problem, previous work stresses
the importance of human factors, e. g., previous engagement
or personal software need from other developers, for the
survival of abandoned projects [38], [76], [77].

Overall, we find these issues more pressing in smaller
projects, which do not have company backing or -funding,
and rely on a few private contributors. In these cases, OSCs
prioritize other issues over security and communication.

5.6. Putting our Findings Into Context

While Wermke et al. focused on a project perspective
and mainly discussed other types of guidance and policies
not focused on individual security setups of contributors,
they found similar reasons as to why projects did not provide
guides, including a lack of perceived relevance, time, or
responsibility [23], which confirms previous findings on the
lack of guidance or norms within OS projects [20]–[22].
Similarly, previous work has suggested using various forms
of documentation or mentoring to mitigate these issues,
especially concerning the on-boarding of new contribu-
tors [78]–[81].

Our extensive insights into the individual security setups
and choices from OSCs extend previous work discussing
challenges with large and intransparent dependencies [31],
[38]. Fischer et al. discusses GitHub measures focused on
code security and illustrates how platform-provided mea-
sures can help improve security within OSS [35].

Regarding the overall security mindset, previous work
has shown that even expert users can tend towards less se-
cure measures if they feel like the context justifies it, e. g., by
using weaker passwords on lesser relevant websites, which
fits the general practicality our interviewees displayed [33],
[39], [44].

Finally, the importance of trust and social structures
was also previously discussed [36], [82], [83]. Previous
work suggests that high-quality commits, reputation of the
employer, or personal connections are essential factors [84]–
[86].

While previous work typically focused on code security
and vulnerability disclosure, we provide insights into the
multitude of individual security setups and choices made by
OSCs. Our interviews give an extensive view and suggest
that contributors are security-aware. However, they also
uncover how more emphasis needs to be put on social
interactions, especially the communication of (necessary)
individual security setups within the OSS ecosystem.

6. Conclusion

In this work, we illustrated and discussed findings from
20 semi-structured interviews with OSCs from critical OSS
projects. Most contributors were security-affine and de-
ployed security measures they perceived as sensible, ef-
fective, and easy to use. However, beyond the usage of
MFA and password managers, we perceived the deployment
of other security measures such as device encryption or
commit signing as less common. Individual security se-
tups were only rarely discussed among contributors. Social
mechanisms such as trust, respect, or politeness inhibited
OSCs from enforcing or checking the adoption of security
measures on other contributors. Overall, we make a list of
recommendations to improve the status quo of individual
security setups of contributors without impeding the unique
culture of the open-source software ecosystem. We include
suggestions for project owners, e. g., using platform-based
security mechanisms instead of individually prompting con-
tributors, utilizing access control hierarchies and CI/CD
solutions to limit the number of accounts with privileged ac-
cess or release rights, and discussing security more broadly,
for example by adding individual security setup information
for contributors to projects’ contributing.md files.

Acknowledgments

We want to thank all of our participants for trusting us
with their experiences and insights, thereby enabling us to
do this research. We are grateful to the reviewers for their
valuable feedback. We thank our lab students Stina Schäfer,
Anne Vonderheide, Kateryna Nosik and Lukas Niehus for
their early text drafts during our lecture. Additionally, we
thank Nicolas Huaman, Niklas Busch, and Juliane Schmüser
for aiding our work as backup interviewers and proofread-
ers. This research was funded by the VolkswagenStiftung
Niedersächsisches Vorab – ZN3695 and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy — EXC 2092
CASA – 390781972.

References

[1] Sonatype, 9th Annual State of the Software Supply
Chain, https : / / www. sonatype . com / press - releases /
sonatype-9th-annual- state-of- the- software- supply-
chain-report (visited on 12/03/2023).

[2] P. Cormier, The State of Enterprise Open Source
2022, https : / /www.redhat .com/en/resources /state-
of - enterprise - open- source- report - 2022 (visited on
08/02/2023).

[3] debug-js, Network Dependents · debug-js/debug,
https : / / github . com / debug - js / debug / network /
dependents (visited on 08/02/2023).

[4] NIST National Vulnerability Database, CVE-2014-
0160 Detail, https : / /nvd .nist .gov /vuln /detail / cve-
2014-0160 (visited on 08/02/2023).

[5] NIST National Vulnerability Database, CVE-2021-
44228 Detail, https://nvd.nist.gov/vuln/detail/cve-
2021-44228 (visited on 08/02/2023).

[6] NIST National Vulnerability Database, CVE-2014-
6271 Detail, https : / /nvd .nist .gov /vuln /detail / cve-
2014-6271 (visited on 08/02/2023).

[7] C. Falfe, ‘Extremely bad’ vulnerability found in
widely used logging system, https : / /www.theverge.
com / 2021 / 12 / 10 / 22828303 / log4j - library -
vulnerability- log4shell- zero-day-exploit (visited on
11/25/2023).

[8] S. Gallagher, Heartbleed vulnerability may have been
exploited months before patch, https : / / arstechnica .
com / information - technology / 2014 / 04 / heartbleed -
vulnerability - may - have - been - exploited - months -
before-patch/ (visited on 11/25/2023).

[9] npm Blog (Archive), kik, left-pad, and npm, https :
//blog.npmjs.org/post/141577284765/kik- left- pad-
and-npm (visited on 08/02/2023).

[10] A. Sharma, Dev corrupts NPM libs ’colors’ and
’faker’ breaking thousands of apps, https : / / www.
bleepingcomputer.com/news/security/dev- corrupts-
npm- libs- colors- and- faker-breaking- thousands-of-
apps/ (visited on 08/02/2023).

[11] A. Sharma, BIG sabotage: Famous npm package
deletes files to protest Ukraine war, https : / / www.
bleepingcomputer.com/news/security/big- sabotage-
famous - npm - package - deletes - files - to - protest -
ukraine-war/ (visited on 08/02/2023).

[12] T. Costa, strong_password v0.0.7 rubygem hijacked,
https : / / withatwist . dev / strong - password - rubygem -
hijacked.html (visited on 08/02/2023).

[13] I. Arghire, Backdoor Found in ‘rest-client’ Ruby Gem,
https://www.securityweek.com/backdoor-found-rest-
client-ruby-gem/ (visited on 08/02/2023).

[14] G. Thorpe, NPM Library (ua-parser-js) Hijacked:
What You Need to Know, https://www.rapid7.com/
blog / post / 2021 / 10 / 25 / npm - library - ua - parser -
js - hijacked - what - you - need - to - know/ (visited on
08/02/2023).

[15] A. Sharma, Popular ’coa’ NPM library hijacked to
steal user passwords, https://www.bleepingcomputer.
com / news / security / popular - coa - npm - library -
hijacked - to - steal - user - passwords/ (visited on
08/02/2023).

[16] Henry, Postmortem for Malicious Packages Published
on July 12th, 2018, https : / / eslint . org / blog / 2018 /

https://www.sonatype.com/press-releases/sonatype-9th-annual-state-of-the-software-supply-chain-report
https://www.sonatype.com/press-releases/sonatype-9th-annual-state-of-the-software-supply-chain-report
https://www.sonatype.com/press-releases/sonatype-9th-annual-state-of-the-software-supply-chain-report
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://github.com/debug-js/debug/network/dependents
https://github.com/debug-js/debug/network/dependents
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2014-6271
https://nvd.nist.gov/vuln/detail/cve-2014-6271
https://www.theverge.com/2021/12/10/22828303/log4j-library-vulnerability-log4shell-zero-day-exploit%20
https://www.theverge.com/2021/12/10/22828303/log4j-library-vulnerability-log4shell-zero-day-exploit%20
https://www.theverge.com/2021/12/10/22828303/log4j-library-vulnerability-log4shell-zero-day-exploit%20
https://arstechnica.com/information-technology/2014/04/heartbleed-vulnerability-may-have-been-exploited-months-before-patch/
https://arstechnica.com/information-technology/2014/04/heartbleed-vulnerability-may-have-been-exploited-months-before-patch/
https://arstechnica.com/information-technology/2014/04/heartbleed-vulnerability-may-have-been-exploited-months-before-patch/
https://arstechnica.com/information-technology/2014/04/heartbleed-vulnerability-may-have-been-exploited-months-before-patch/
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://withatwist.dev/strong-password-rubygem-hijacked.html
https://withatwist.dev/strong-password-rubygem-hijacked.html
https://www.securityweek.com/backdoor-found-rest-client-ruby-gem/
https://www.securityweek.com/backdoor-found-rest-client-ruby-gem/
https://www.rapid7.com/blog/post/2021/10/25/npm-library-ua-parser-js-hijacked-what-you-need-to-know/
https://www.rapid7.com/blog/post/2021/10/25/npm-library-ua-parser-js-hijacked-what-you-need-to-know/
https://www.rapid7.com/blog/post/2021/10/25/npm-library-ua-parser-js-hijacked-what-you-need-to-know/
https://www.bleepingcomputer.com/news/security/popular-coa-npm-library-hijacked-to-steal-user-passwords/
https://www.bleepingcomputer.com/news/security/popular-coa-npm-library-hijacked-to-steal-user-passwords/
https://www.bleepingcomputer.com/news/security/popular-coa-npm-library-hijacked-to-steal-user-passwords/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

07 / postmortem - for - malicious - package - publishes/
(visited on 08/02/2023).

[17] Gentoo Wiki, Project:infrastructure/incident
reports/2018-06-28 github, https:/ /wiki.gentoo.org/
wiki/Project:Infrastructure/Incident_reports/2018-06-
28_Github (visited on 08/02/2023).

[18] E. Holmes, How I gained commit access to Home-
brew in 30 minutes, https://medium.com/@vesirin/
how- i-gained-commit-access- to-homebrew- in-30-
minutes-2ae314df03ab (visited on 08/02/2023).

[19] Python Security Documentation, Account Takeover
and Malicious Replacement of ctx Project, https : / /
python - security . readthedocs . io / pypi - vuln / index -
2022- 05- 24- ctx- domain- takeover.html (visited on
08/02/2023).

[20] S.-F. Wen, “Learning Secure Programming in Open
Source Software Communities: A Socio-technical
View,” in Proceedings of the 6th International Con-
ference on Information and Education Technology,
2018, pp. 25–32.

[21] K. Constantino, S. Zhou, M. Souza, E. Figueiredo,
and C. Kästner, “Understanding Collaborative Soft-
ware Development: An Interview Study,” in Proceed-
ings of the 15th International Conference on Global
Software Engineering, 2020, pp. 55–65.

[22] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Red-
miles, “Social Barriers Faced by Newcomers Placing
Their First Contribution in Open Source Software
Projects,” in Proceedings of the 18th ACM conference
on Computer supported cooperative work & social
computing, 2015, pp. 1379–1392.

[23] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné, Y.
Acar, and S. Fahl, “Committed to Trust: A Qualitative
Study on Security & Trust in Open Source Software
Projects,” in 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-
26, 2022, IEEE, 2022, pp. 1880–1896.

[24] J. C. Santos, A. Peruma, M. Mirakhorli, M. Galstery,
J. V. Vidal, and A. Sejfia, “Understanding Software
Vulnerabilities Related to Architectural Security Tac-
tics: An Empirical Investigation of Chromium, php
and Thunderbird,” in 2017 IEEE International Con-
ference on Software Architecture (ICSA), IEEE, 2017,
pp. 69–78.

[25] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora,
and M. Di Penta, “How Open Source Projects Use
Static Code Analysis Tools in Continuous Integration
Pipelines,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR),
IEEE, 2017, pp. 334–344.

[26] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vuli-
nOSS: A Dataset of Security Vulnerabilities in Open-
Source Systems,” in Proceedings of the 15th Inter-
national conference on mining software repositories,
2018, pp. 18–21.

[27] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing
of security vulnerabilities in open source projects: A
case study of apache http server and apache tomcat,”

in 2019 12th IEEE Conference on software test-
ing, validation and verification (ICST), IEEE, 2019,
pp. 68–78.

[28] R. Ramsauer, L. Bulwahn, D. Lohmann, and W.
Mauerer, “The Sound of Silence: Mining Security
Vulnerabilities from Secret Integration Channels in
Open-Source Projects,” in Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Se-
curity Workshop, 2020, pp. 147–157.

[29] G. Antal, M. Keleti, and P. Hegedŭs, “Exploring
the Security Awareness of the Python and JavaScript
Open Source Communities,” in Proceedings of the
17th International Conference on Mining Software
Repositories, 2020, pp. 16–20.

[30] P. Ladisa, H. Plate, M. Martinez, and O. Barais,
“SoK: Taxonomy of Attacks on Open-Source Soft-
ware Supply Chains,” in 2023 IEEE Symposium on
Security and Privacy (SP), IEEE Computer Society,
2022, pp. 167–184.

[31] M. Zimmermann, C.-A. Staicu, C. Tenny, and M.
Pradel, “Small World with High Risks: A Study of
Security Threats in the npm Ecosystem.,” in USENIX
security symposium, vol. 17, 2019.

[32] npm, npm | Home, https://www.npmjs.com/ (visited
on 11/25/2023).

[33] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. Maddila, and L. Williams, “What are Weak Links
in the npm Supply Chain?” In Proceedings of the 44th
International Conference on Software Engineering:
Software Engineering in Practice, 2022, pp. 331–340.

[34] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Back-
stabber’s Knife Collection: A Review of Open Source
Software Supply Chain Attacks,” in Detection of
Intrusions and Malware, and Vulnerability Assess-
ment: 17th International Conference, DIMVA 2020,
Lisbon, Portugal, June 24–26, 2020, Proceedings 17,
Springer, 2020, pp. 23–43.

[35] F. Fischer, J. Höbenreich, and J. Grossklags, “The
Effectiveness of Security Interventions on GitHub,”
pp. 2426–2440, 2023.

[36] M. Silic and A. Back, “Information Security and
Open Source Dual Use Security Software: Trust Para-
dox,” in Open Source Software: Quality Verification:
9th IFIP WG 2.13 International Conference, OSS
2013, Koper-Capodistria, Slovenia, June 25-28, 2013.
Proceedings 9, Springer, 2013, pp. 194–206.

[37] K. Constantino, M. Souza, S. Zhou, E. Figueiredo,
and C. Kästner, “Perceptions of open-source soft-
ware developers on collaborations: An interview and
survey study,” Journal of Software: Evolution and
Process, vol. 35, no. 5, e2393, 2023.

[38] D. Wermke, J. H. Klemmer, N. Wöhler, J. Schmüser,
Y. A. Harshini Sri Ramulu, and S. Fahl., ““Always
Contribute Back”: A Qualitative Study on Security
Challenges of the Open Source Supply Chain,” in
Proceedings of the 44th IEEE Symposium on Security
and Privacy (S&P ’23), May 2023.

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-28_Github
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab
https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab
https://python-security.readthedocs.io/pypi-vuln/index-2022-05-24-ctx-domain-takeover.html
https://python-security.readthedocs.io/pypi-vuln/index-2022-05-24-ctx-domain-takeover.html
https://python-security.readthedocs.io/pypi-vuln/index-2022-05-24-ctx-domain-takeover.html
https://www.npmjs.com/

[39] E. Stobert and R. Biddle, “Expert Password Manage-
ment,” in Technology and Practice of Passwords: 9th
International Conference, PASSWORDS 2015, Cam-
bridge, UK, December 7–9, 2015, Proceedings 9,
Springer, 2016, pp. 3–20.

[40] I. Ion, R. Reeder, and S. Consolvo, ““... no one can
hack my mind”: Comparing Expert and Non-Expert
Security Practices,” in Symposium on Usable Privacy
and Security (SOUPS), 2015.

[41] K. Busse, J. Schäfer, and M. Smith, “Replication: No
One Can Hack My Mind Revisiting a Study on Expert
and Non-expert Security Practices and Advice,” in
Symposium on Usable Privacy and Security, 2019,
pp. 116–136.

[42] E. M. Redmiles, N. Warford, A. Jayanti, A. Koneru,
S. Kross, M. Morales, R. Stevens, and M. L. Mazurek,
“A Comprehensive Quality Evaluation of Security
and Privacy Advice on the Web,” in 29th USENIX
Security Symposium, USENIX, 2020, pp. 89–100.

[43] J. H. Klemmer, M. Gutfleisch, C. Stransky, Y. Acar,
M. A. Sasse, and S. Fahl, “"Make Them Change it
Every Week!": A Qualitative Exploration of Online
Developer Advice on Usable and Secure Authentica-
tion,” pp. 2740–2754, 2023.

[44] N. Lykousas and C. Patsakis, “Tales from the Git:
Automating the Detection of Secrets on Code and
Assessing Developers’ Passwords Choices,” in 2023
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), IEEE, 2023, pp. 68–75.

[45] GitHub, Security Overview · expressjs/express, https:
/ /github.com/expressjs /express /security (visited on
12/03/2023).

[46] O. Dabic, E. Aghajani, and G. Bavota, “Sampling
Projects in GitHub for MSR Studies,” in 18th
IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2021, IEEE, 2021, pp. 560–
564.

[47] SEART, GitHub Search, https://seart-ghs.si.usi.ch/
(visited on 07/19/2023).

[48] GitHub, GitHub Terms of Service, https://docs.github.
com/en/site- policy/github- terms/github- terms- of-
service (visited on 11/25/2023).

[49] Qualtrics, Qualtrics XM: The Leading Experience
Management Software, https : / /www.qualtrics . com/
(visited on 11/25/2023).

[50] Calendly, Free Online Appointment Scheduling Soft-
ware, https://calendly.com/ (visited on 11/25/2023).

[51] V. Clarke and V. Braun, “Thematic Analysis,” in
Encyclopedia of Critical Psychology. New York, NY:
Springer New York, 2014, pp. 1947–1952.

[52] ATLAS.ti, ATLAS.ti | The #1 Software for Qualita-
tive Data Analysis, https : / / atlasti . com/ (visited on
11/25/2023).

[53] N. McDonald, S. Schoenebeck, and A. Forte, “Re-
liability and Inter-Rater Reliability in Qualitative
Research: Norms and Guidelines for CSCW and
HCI Practice,” Proceedings of the ACM on Human-

Computer Interaction, vol. 3, no. CSCW, pp. 1–23,
2019.

[54] X. Bouwman, H. Griffioen, J. Egbers, C. Doerr, B.
Klievink, and M. van Eeten, “A different Cup of TI?
The Added Value of Commercial Threat Intelligence,”
in 29th USENIX Security Symposium (USENIX Secu-
rity 20), USENIX Association, Aug. 2020, pp. 433–
450.

[55] S. Höltervennhoff, P. Klostermeyer, N. Wöhler, S.
Fahl, and Y. Acar, ““I wouldn’t want my unsafe code
to run my pacemaker”: An Interview Study on the
Use, Comprehension, and Perceived Risks of Un-
safe Rust,” in In 32nd USENIX Security Symposium,
USENIX Security ’23, Anaheim, CA, USA, August 9-
11, 2023, USENIX Association, 2023.

[56] Department of Homeland Security (DHS)/Science
and Technology Directorate (S&T)/Cyber Security
Division, “The Menlo Report: Ethical Principles
Guiding Information and Communication Technology
Research,” 2012.

[57] FIDO Alliance, Passkeys, https : / / fidoalliance . org /
passkeys/ (visited on 11/25/2023).

[58] GitHub, Raising the bar for software security: GitHub
2FA begins March 13, https://github.blog/2023-03-
09-raising-the-bar-for-software-security-github-2fa-
begins-march-13/ (visited on 11/25/2023).

[59] Y. Zhang, F. Monrose, and M. K. Reiter, “The Secu-
rity of Modern Password Expiration: An Algorithmic
Framework and Empirical Analysis,” in Proc. 17th
ACM Conference on Computer and Communication
Security (CCS’10), ACM, 2010.

[60] S. Chiasson and P. C. van Oorschot, “Quantifying the
Security Advantage of Password Expiration Policies,”
Designs, Codes and Cryptography, vol. 77, no. 2,
pp. 401–408, 2015.

[61] J. Mink, H. Kaur, J. Schmüser, S. Fahl, and Y. Acar,
“"Security is not my field, I’m a stats guy": A Quali-
tative Root Cause Analysis of Barriers to Adversarial
Machine Learning Defenses in Industry,” in In 32nd
USENIX Security Symposium, 2023.

[62] N. Huaman, B. von Skarczinski, D. Wermke, C.
Stransky, Y. Acar, A. Dreißigacker, and S. Fahl, “A
Large-Scale Interview Study on Information Security
in and Attacks against Small and Medium-sized En-
terprises,” in In 30th USENIX Security Symposium,
USENIX Security ’21, Vancouver, B.C., Canada, Au-
gust 11-13, 2021, USENIX Association, Aug. 2021.

[63] npm Docs, Requiring two-factor authentication in
your organization, https://docs.npmjs.com/requiring-
two - factor - authentication - in - your - organization
(visited on 12/03/2023).

[64] D. Stufft, Securing PyPI accounts via Two-Factor
Authentication, https://blog.pypi.org/posts/2023-05-
25-securing-pypi-with-2fa/ (visited on 12/03/2023).

[65] J. Reynolds, T. Smith, K. Reese, L. Dickinson, S.
Ruoti, and K. Seamons, “A Tale of Two Studies:
The Best and Worst of YubiKey Usability,” in 2018

https://github.com/expressjs/express/security
https://github.com/expressjs/express/security
https://seart-ghs.si.usi.ch/
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://www.qualtrics.com/
https://calendly.com/
https://atlasti.com/
https://fidoalliance.org/passkeys/
https://fidoalliance.org/passkeys/
https://github.blog/2023-03-09-raising-the-bar-for-software-security-github-2fa-begins-march-13/
https://github.blog/2023-03-09-raising-the-bar-for-software-security-github-2fa-begins-march-13/
https://github.blog/2023-03-09-raising-the-bar-for-software-security-github-2fa-begins-march-13/
https://docs.npmjs.com/requiring-two-factor-authentication-in-your-organization
https://docs.npmjs.com/requiring-two-factor-authentication-in-your-organization
https://blog.pypi.org/posts/2023-05-25-securing-pypi-with-2fa/
https://blog.pypi.org/posts/2023-05-25-securing-pypi-with-2fa/

IEEE Symposium on Security and Privacy (SP), 2018,
pp. 872–888.

[66] F. M. Farke, L. Lorenz, T. Schnitzler, P. Markert, and
M. Dürmuth, “"You Still Use the Password After All"
– Exploring FIDO2 Security Keys in a Small Com-
pany,” in Sixteenth Symposium on Usable Privacy and
Security (SOUPS 2020), USENIX Association, Aug.
2020, pp. 19–35.

[67] K. Reese, T. Smith, J. Dutson, J. Armknecht, J.
Cameron, and K. Seamons, “A Usability Study of
Five Two-Factor Authentication Methods,” in Fif-
teenth Symposium on Usable Privacy and Security
(SOUPS 2019), 2019.

[68] L. Würsching, F. Putz, S. Haesler, and M. Hol-
lick, “FIDO2 the Rescue? Platform vs. Roam-
ing Authentication on Smartphones,” in Pro-
ceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, ser. CHI
’23, <conf-loc>, <city>Hamburg</city>, <coun-
try>Germany</country>, </conf-loc>: Association
for Computing Machinery, 2023.

[69] L. Lassak, E. Pan, B. Ur, and M. Golla, “Why Aren’t
We Using Passkeys? Obstacles Companies Face De-
ploying FIDO2 Passwordless Authentication,”

[70] Linux Kernel, Linux Kernel Contribution Maturity
Model, https : / / www. kernel . org / doc / html / latest /
process / contribution - maturity - model . html (visited
on 12/03/2023).

[71] SLSA, SLSA • Supply-chain Levels for Software Ar-
tifacts, https://slsa.dev/ (visited on 12/03/2023).

[72] A. Khalimov, S. Benahmed, R. Hussain, S. A. Kazmi,
A. Oracevic, F. Hussain, F. Ahmad, and C. A.
Kerrache, “Container-Based Sandboxes for Malware
Analysis: A Compromise Worth Considering,” in Pro-
ceedings of the 12th IEEE/ACM International Confer-
ence on Utility and Cloud Computing, 2019, pp. 219–
227.

[73] GitLab, A beginner’s guide to container security,
https://about.gitlab.com/topics/devsecops/beginners-
guide-to-container-security/ (visited on 12/03/2023).

[74] npm Blog, Details about the event-stream incident,
https : / / blog . npmjs . org / post / 180565383195 /
details- about- the- event- stream- incident (visited on
08/02/2023).

[75] Debian, New Members Corner, https://www.debian.
org/devel/join/nm-checklist (visited on 12/03/2023).

[76] G. Avelino, E. Constantinou, M. T. Valente, and A.
Serebrenik, “On the Abandonment and Survival of
Open Source Projects: An Empirical Investigation,” in
2019 ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement (ESEM),
IEEE, 2019, pp. 1–12.

[77] C. Miller, D. G. Widder, C. Kästner, and B. Vasilescu,
“Why Do People Give Up Flossing? A Study of
Contributor Disengagement in Open Source,” in
Open Source Systems: 15th IFIP WG 2.13 Interna-
tional Conference, OSS 2019, Montreal, QC, Canada,

May 26–27, 2019, Proceedings 15, Springer, 2019,
pp. 116–129.

[78] I. Steinmacher, C. Treude, and M. A. Gerosa, “Let
Me In: Guidelines for the Successful Onboarding of
Newcomers to Open Source Projects,” IEEE Software,
vol. 36, no. 4, pp. 41–49, 2018.

[79] S. Balali, U. Annamalai, H. S. Padala, B. Trinken-
reich, M. A. Gerosa, I. Steinmacher, and A.
Sarma, “Recommending Tasks to Newcomers in OSS
Projects: How do Mentors Handle It?” In Proceed-
ings of the 16th International Symposium on Open
Collaboration, 2020, pp. 1–14.

[80] I. Steinmacher, T. U. Conte, C. Treude, and M. A.
Gerosa, “Overcoming Open Source Project Entry
Barriers With a Portal for Newcomers,” in Proceed-
ings of the 38th International Conference on Software
Engineering, 2016, pp. 273–284.

[81] J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and
P. Rodeghero, “Conversational Bot for Newcomers
Onboarding to Open Source Projects,” in Proceedings
of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 46–50.

[82] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K.
Lakhani, Understanding Free/Open Source Software
Development Processes, 2006.

[83] K. Crowston, K. Wei, J. Howison, and A. Wig-
gins, “Free/Libre Open-Source Software Develop-
ment: What We Know and What We Do Not Know,”
ACM Computing Surveys (CSUR), vol. 44, no. 2,
pp. 1–35, 2008.

[84] M. Antikainen, T. Aaltonen, and J. Väisänen, “The
Role of Trust in OSS Communities - Case Linux
Kernel Community,” in Open Source Development,
Adoption and Innovation: IFIP Working Group 2.13
on Open Source Software, June 11–14, 2007, Limer-
ick, Ireland 3, Springer, 2007, pp. 223–228.

[85] V. S. Sinha, S. Mani, and S. Sinha, “Entering the
Circle of Trust: Developer Initiation as Committers
in Open-Source Projects,” in Proceedings of the 8th
Working Conference on Mining Software Reposito-
ries, 2011, pp. 133–142.

[86] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of
Social and Technical Factors for Evaluating Contri-
bution in GitHub,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, 2014,
pp. 356–366.

https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://slsa.dev/
https://about.gitlab.com/topics/devsecops/beginners-guide-to-container-security/
https://about.gitlab.com/topics/devsecops/beginners-guide-to-container-security/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://www.debian.org/devel/join/nm-checklist
https://www.debian.org/devel/join/nm-checklist

	Introduction
	Related Work
	Methodology
	Interview Structure
	Recruitment
	Data Analysis
	Ethics
	Limitations

	Results
	Interviewee Demographics
	Individual Security Setups
	(Un)Official Guidelines
	Contributor On- & Off-boarding
	Challenges, Improvements, and Recommendations

	Discussion
	Deployed Individual Security Setups (RQ1)
	Common Challenges among Contributors (RQ2)
	Better Supporting Contributors with Individual Security Setups (RQ3)
	Social Mechanisms Impact Individual Security Setups
	Some Challenges Seem Hard to Solve
	Putting our Findings Into Context

	Conclusion
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

